27 research outputs found

    Ultrafast Dynamics of Vibrational Symmetry Breaking in a Charge-ordered Nickelate

    Get PDF
    The ability to probe symmetry breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-THz response of the model stripe compound La1.75_{1.75}Sr0.25_{0.25}NiO4_{4}, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen - as witnessed by time-delayed suppression of zone-folded Ni-O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry breaking dynamics in solids.Comment: 21 pages, 4 figures; updated version with journal re

    Quasi-particles dynamics in underdoped Bi2212 under strong optical perturbation.

    Get PDF
    In this work an optical pump-probe set-up is used to study the photo-induced non-equilibrium dynamics of a superconducting underdoped Bi2212 single crystal in a strong excitation regime (10<<600 \ub5J/cm2). The use of a tunable repetition rate 120 fs pulsed laser source allows us to avoid significant average heating of the sample and to optimize the signal-to-noise ratio in the detection of the transient reflectivity variation. A discontinuity of the transient reflectivity is observed at high excitation intensities (~70 \ub5J/cm2). Numerical simulations of the heat diffusion problem indicate that, in this regime, the local temperature of the sample is lower than TC, confirming the impulsive nature of this phenomenon. The quasi-particles (QP) dynamics in the strongly perturbed superconducting state (10<<70 \ub5J/cm2) is analysed within the framework of the Rotwarf-Taylor model. The picture emerging from the data is consistent with a dynamics governed by high-frequency phonon (HFP) population, which causes a bottleneck effect in the QP recombinatio

    Ultrafast insulator-to-metal phase transition as a switch to measure the spectrogram of a supercontinuum light pulse

    Get PDF
    In this letter we demonstrate the possibility to determine the temporal and spectral structure (spectrogram) of a complex light pulse exploiting the ultrafast switching character of a nonthermal photoinduced phase transition. As a proof, we use a VO2 multifilm, undergoing an ultrafast insulator-to-metal phase transition when excited by femtosecond near-infrared laser pulses. The abrupt variation in the multifilm optical properties, over a broad infrared/visible frequency range, is exploited to determine, in situ and in a simple way, the spectrogram of a supercontinuum pulse produced by a photonic crystal fiber. The determination of the structure of the pulse is mandatory to develop pump-probe experiments with frequency resolution over a broad spectral range (700-1100 nm)

    Orbital dynamics during an ultrafast insulator to metal transition

    Full text link
    Phase transitions driven by ultrashort laser pulses have attracted interest both for understanding the fundamental physics of phase transitions and for potential new data storage or device applications. In many cases these transitions involve transient states that are different from those seen in equilibrium. To understand the microscopic properties of these states, it is useful to develop elementally selective probing techniques that operate in the time domain. Here we show fs-time-resolved measurements of V Ledge Resonant Inelastic X-Ray Scattering (RIXS) from the insulating phase of the Mott- Hubbard material V2O3 after ultrafast laser excitation. The probed orbital excitations within the d-shell of the V ion show a sub-ps time response, which evolve at later times to a state that appears electronically indistinguishable from the high-temperature metallic state. Our results demonstrate the potential for RIXS spectroscopy to study the ultrafast orbital dynamics in strongly correlated materials.Comment: 12 pages, 4 figure

    Nematicity dynamics in the charge-density-wave phase of a cuprate superconductor

    Full text link
    Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant x-ray scattering on the (0 0 1) Bragg peak at the Cu L3 and oxygen K resonances, we investigate non-equilibrium dynamics of Qa = Qb = 0 nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La1.65Eu0.2Sr0.15CuO4. In contrast to the slow lattice dynamics probed at the apical oxygen K resonance, fast nematicity dynamics are observed at the Cu L3 and planar oxygen K resonances. The temperature dependence of the nematicity dynamics is correlated with the onset of CDW order. These findings unambiguously indicate that the CDW phase, typically evidenced by translational symmetry breaking, includes a significant electronic nematic component.Comment: 16 pages, 4 figure

    Ultrafast domain dilation induced by optical pumping in ferromagnetic CoFe/Ni multilayers

    Full text link
    Ultrafast optical pumping of systems with spatially nonuniform magnetic textures is known to cause far-from-equilibrium spin transport effects, such as the broadening of domain-walls. Here, we study the dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers subject to a femtosecond optical pump and find an ultrafast domain dilation by 6% within 1.6 ps. This surprising result is based on the unambiguous determination of a harmonically-related shift of ultrafast magnetic X-ray diffraction for the first- and third-order rings. Domain dilation is plausible from conservation of momentum arguments, whereby inelastic scattering from a hot, quasi-ballistic, radial current transfers momentum to the magnetic domains. Our results suggest a potentially rich variety of unexpected physical phenomena associated with far-from-equilibrium inelastic electron-magnon scattering processes in the presence of spin textures

    Ultrafast charge localization in a stripe-phase nickelate

    No full text
    Self-organized electronically-ordered phases are a recurring feature in correlated materials, resulting in e.g. fluctuating charge stripes whose role in high-Tc superconductivity is under debate. However, the relevant cause-effect relations between real-space charge correlations and low-energy excitations remain hidden in time-averaged studies. Here, we reveal ultrafast charge localization and lattice vibrational coupling as dynamical precursors of stripe formation in the model compound La1.75Sr0.25NiO4, using ultrafast and equilibrium mid-infrared spectroscopy. The opening of a pseudogap at a crossover temperature T* far above long-range stripe formation establishes the onset of electronic localization which is accompanied by an enhanced Fano asymmetry of Ni-O stretch vibrations. Ultrafast excitation triggers a sub-picosecond dynamics exposing the synchronous modulation of electron-phonon coupling and charge localization. These results illuminate the role oflocalization in forming the pseudogap in nickelates, opening a path to understanding this mysterious phase in a broad class of complex oxides

    Disclosing the ultrafast dynamics of competing phases in high - temperature superconductors by time - resolved optical spectroscopy

    No full text
    2009/2010Understanding the interplay between the phases present in a high-temperature superconductor (superconducting, pseudogap, strange metal and Fermi-liquid-like) is the key-concept for shining light on the nature of the superconductivity mechanisms in copper-oxide based superconductors. Here, I set the bases for addressing this physics by developing an approach based on ultrafast time-resolved optical spectroscopy in the infrared and visible spectral regions. The experiments performed disclose the real-time evolution of the optical properties while the system is suddenly brought out-of-equilibrium by an ultrashort laser pulse. The data obtained show how a competing admixture of two or more phases in a high-temperature superconductor can be created and observed evolving. Finally by using new models for interpreting the experimental results the ultrafast dynamics of the competing phases start to be revealed.XXIII Ciclo198
    corecore